
ar
X

iv
:c

on
d-

m
at

/0
41

10
08

 v
1 

  3
0 

O
ct

 2
00

4
Response of discrete nonlinear systems with many degrees of freedom
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We study the response of a large array of coupled nonlinear oscillators to parametric excitation,
motivated by the growing interest in the nonlinear dynamics of microelectromechanical and nano-
electromechanical systems (MEMS and NEMS). Using a multiscale analysis, we derive an amplitude
equation that captures the slow dynamics of the coupled oscillators just above the onset of para-
metric oscillations. The amplitude equation that we derive here from first principles exhibits a
wavenumber dependent bifurcation similar in character to the behavior known to exist in fluids un-
dergoing the Faraday wave instability. We confirm this behavior numerically and make suggestions
for testing it experimentally with MEMS and NEMS resonators.
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In the last decade we have witnessed exciting tech-
nological advances in the fabrication and control of mi-
croelectromechanical and nanoelectromechanical systems
(MEMS and NEMS). Such systems are being developed
for a host of nanotechnological applications, as well as
for basic research in the mesoscopic physics of phonons,
and the general study of the behavior of mechanical de-
grees of freedom at the interface between the quantum
and the classical worlds [1, 2, 3]. Surprisingly, NEMS
have also opened up a new experimental window into
the study of the nonlinear dynamics of discrete systems
with many degrees of freedom. A combination of three
properties of NEMS resonators has led to this unique ex-
perimental opportunity. First and most important is the
experimental observation that micro- and nanomechani-
cal resonators tend to behave nonlinearly at very modest
amplitudes. This nonlinear behavior has not only been
observed experimentally [4, 5, 6, 7, 8, 9, 10, 11], but
has already been exploited to achieve mechanical signal
amplification and mechanical noise squeezing [12, 13] in
single resonators. Second is the fact that at their di-
mensions, the normal frequencies of nanomechanical res-
onators are extremely high—recently exceeding the 1GHz
mark [14]—facilitating the design of ultra-fast mechani-
cal devices, and making the waiting times for unwanted
transients bearable on experimental time scales. Third
is the technological ability to fabricate large arrays of
MEMS and NEMS resonators whose collective response
might be useful for signal enhancement and noise reduc-
tion [15], as well as for sophisticated mechanical signal
processing applications. Such arrays have already ex-
hibited interesting nonlinear dynamics ranging from the
formation of extended patterns [16]—as one commonly
observes in analogous continuous systems such as Fara-
day waves—to that of intrinsically localized modes [17].
Thus, nanomechanical resonator arrays are perfect for
testing dynamical theories of discrete nonlinear systems
with many degrees of freedom. At the same time, the the-

oretical understanding of such systems may prove useful
for future nanotechnological applications.

Two of us (Lifshitz and Cross [18, henceforth LC]) have
recently studied the response of coupled nonlinear oscilla-
tors to parametric excitation described by the equations
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with n = 1 . . .N , and fixed boundary conditions u0 =
uN+1 = 0. We used secular perturbation theory to con-
vert these into a set of coupled nonlinear algebraic equa-
tions for the normal mode amplitudes of the system, en-
abling us to obtain exact results for small arrays but only
a qualitative understanding of the dynamics of large ar-
rays. In order to obtain analytical results for large arrays
we study here the same system of equations, approaching
it from the continuous limit of infinitely-many degrees of
freedom. Our central result is a scaled amplitude equa-
tion (6), governed by a single control parameter, that
captures the slow dynamics of the coupled oscillators just
above the onset of parametric oscillations. This ampli-
tude equation exhibits a wavenumber-dependent bifur-
cation that can be traced back to the parameters of the
equations of motion of the system (1). We confirm this
behavior numerically and make suggestions for testing it
experimentally.

The equations of motion (1) are modeled after the ex-
periment of Buks and Roukes [16], who succeeded in fab-
ricating, exciting, and measuring the response to para-
metric excitation of an array of 67 micromechanical res-
onating gold beams. Detailed arguments for the choice of
terms introduced into the equations of motion are given
by LC. The guiding principle is to introduce only those
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terms that are essential for capturing the physical be-
havior observed in the experiment. These include a cu-
bic nonlinear elastic restoring force (whose coefficient is
scaled to 1), a dc electrostatic nearest-neighbor coupling
term with a small ac component responsible for the para-
metric excitation (with coefficients ∆2 and ∆2H respec-
tively), and linear as well as cubic nonlinear dissipation
terms (with coefficients Γ and η respectively). The lat-
ter terms are taken to be of a nearest neighbor form,
motivated by the experimental indication that most of
the dissipation comes from the electrostatic interaction
between neighboring beams.

The dissipation of the system is assumed to be weak,
which makes it possible to excite the beams with rel-
atively small driving amplitudes. In such case the re-
sponse of the beams is moderate, justifying the descrip-
tion of the system with nonlinearities up to cubic terms
only. The weak dissipation can be parameterized by in-
troducing a small expansion parameter ǫ ≪ 1, physically
defined by the linear dissipation coefficient Γ ≡ ǫγ, with
γ of order one. The driving amplitude is then expressed
by ∆2H = ǫh, with h of order one. We assume the
system is excited in its first instability tongue, i.e. we
take ωp itself to lie within the normal frequency band√

1 − 2∆2 < ωp < 1. The weakly nonlinear regime is
studied by expanding the displacements un in powers of
ǫ. Taking the leading term to be of the order of ǫ1/2

ensures that all the corrections, to a simple set of equa-
tions describing N coupled harmonic oscillators, enter
the equations at the same order of ǫ3/2.

We introduce a continuous displacement field u(x, t),
keeping in mind that only for integral values x = n of
the spatial coordinate does it actually correspond to the
displacements u(n, t) = un(t) of the discrete set of oscilla-
tors in the array. We introduce slow spatial and temporal
scales, X = ǫx and T = ǫt, upon which the dynamics of
the envelope function occurs, and expand the displace-
ment field in terms of ǫ,

u(x, t) = ǫ1/2
[(

A+(X, T )e−iqpx + A∗
−(X, T )eiqpx

)

eiωpt

+ c.c.
]

+ O(ǫ3/2), (2)

where the asterisk and c.c. stand for the complex con-
jugate, and qp and ωp are related through the disper-
sion relation ω2

p = 1 − 2∆2 sin2(qp/2). The response to
lowest order in ǫ is expressed in terms of two counter-
propagating waves with complex amplitudes A+ and A−,
a typical ansatz for parametrically excited continuous
systems [19], though our choice for the spatial and tem-
poral scales, which proves useful in what follows, is not
typical. Substituting (2) into the equations of motion (1)
yields a solvability condition from which we can obtain

the two coupled amplitude equations,
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where the upper signs (lower signs) give the equation for

A+ (A−) and vg = ∂ω
∂q = −∆2 sin(qp)

2ωp

is the group velocity.

A detailed derivation of the amplitude equations (3) can
be found in Ref. 20. Similar equations were previously
derived for describing Faraday waves [21, 22].

By linearizing the amplitude equations (3) about the
zero solution (A+ = A− = 0) we find [20] that the lin-
ear combination of the two amplitudes that first becomes
unstable at h = 2γωp is B ∝ (A+ − iA−)—representing
the emergence of a standing wave with a temporal phase
of π/4 relative to the drive—while the orthogonal linear
combination of the amplitudes decays exponentially and
does not participate in the dynamics at onset. Thus,
just above threshold we can reduce the description of the
dynamics to a single amplitude B, where at a finite am-
plitude above threshold a band of unstable modes around
qp can contribute to the spatial form of B. This is similar
to the procedure introduced by Riecke [23] for describing
the onset of Faraday waves.

We define a reduced driving amplitude g with respect
to the threshold 2γωp by letting (h − 2γωp)/2γωp ≡ gδ,
with δ ≪ 1. In order to obtain an equation, describ-
ing the relevant slow dynamics of the new amplitude B,
we need to select the proper scaling of the original am-
plitudes A±, as well as their spatial and temporal vari-
ables, with respect to the new small parameter δ. This is
achieved [20] after a process of trial and error, aided by a
few heuristic arguments which we only summarize here.
We assume that the coefficient of nonlinear dissipation η
is small. It is thus apparent from the original amplitude
equations (3) that a quintic term must enter in order to
saturate the growth of the amplitudes A±. This is similar
to the situation encountered by Deissler and Brand [24]
who studied localized modes near a subcritical bifurca-
tion to traveling waves. Here this can be achieved by
defining the small parameter δ with respect to the coef-
ficient of nonlinear dissipation—letting η = δ1/2η0, with
η0 of order one—and taking the amplitudes to be of or-
der δ1/4. Further noting that with a drive amplitude that
scales as δ the growth rate scales like δ as well, and the
bandwidth of unstable wave numbers scales as δ1/2, we
finally make the ansatz that

(

A+

A−

)

= δ1/4

(

1
i

)

B(ξ̂, τ̂ ) + O
(

δ3/4
)

, (4)

where ξ̂ = δ1/2X and τ̂ = δT are the new spatial and
temporal scales respectively. The amplitude equation for
B(ξ̂, τ̂ ) is derived by once again using the multiple scales
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method. After applying one last set of rescaling trans-
formations,
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9

32

τ

ω2
pη2

0γ sin10 (qp/2)
, ξ̂ =

3

8

|vg|ξ
ωpη0γ sin6 (qp/2)

,

|B|2 → 16

27
ω2

pη0γ sin6
(qp

2

)

|B|2, g → 32

9
ω2

pη
2
0 sin8

(qp

2

)

g, (5)

followed by some lengthy algebra [20], we end up with an
amplitude equation governed by a single parameter,

∂B

∂τ
= gB +

∂2B

∂ξ2
+ i

2

3

(

4|B|2 ∂B

∂ξ
+ B2 ∂B∗

∂ξ

)

−2|B|2B − |B|4B. (6)

Once we have obtained this amplitude equation it can
be used to study a variety of dynamical solutions, rang-
ing from simple single-mode to more complicated non-
linear extended solutions, or possibly even localized so-
lutions. The form of Eq. (6) is also applicable to the
onset of parametrically driven standing waves in contin-
uum systems with weak nonlinear damping, and com-
bines in a single equation a number of effects studied
previously [21, 22, 23, 24, 25, 26]. The scalings and nu-
merical coefficients will be different in different systems.
Here we focus on the regime of small reduced amplitude
g and look upon the saturation of single-mode solutions
of the form

B = bke−ikξ, (7)

corresponding—via the scaling ξ̂ = Sξξ, where the scale
factor Sξ is defined in (5)—to a standing wave with a

shifted wave number q = qp + kǫ
√

δ/Sξ. From the linear
terms in the amplitude equation (6) we find, as expected,
that for g > k2 the zero-displacement solution is unsta-
ble to small perturbations of the form of (7), defining
the parabolic neutral stability curve, shown as a dashed
line in Fig. 2. The nonlinear gradients and the cubic
term take the simple form 2(k − 1)|bk|2bk. For k < 1
these terms immediately act to saturate the growth of
the amplitude assisted by the quintic term. Standing
waves therefore bifurcate supercritically from the zero-
displacement state. For k > 1 the cubic terms act to
increase the growth of the amplitude, and saturation is
achieved only by the quintic term. Standing waves there-
fore bifurcate subcritically from the zero-displacement
state. Wave-number dependent bifurcations similar in
character were also predicted and observed numerically
in Faraday waves [22, 25, 26]. The saturated amplitude
|bk|, obtained by setting Eq. (6) to zero, is given by

|bk|2 = (k − 1) ±
√

(k − 1)2 + (g − k2) ≥ 0. (8)

The original boundary conditions u(0, t) = u(N + 1, t) =
0 impose a phase of π/4 on bk and require that the wave
numbers be quantized qm = mπ/(N + 1), m = 1 . . . N .
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FIG. 1: (Color online) Response of the oscillator array plot-
ted as a function of reduced amplitude g for three different
wave number shifts determined by fixing the number of oscil-
lators N : k = 0 (for N = 100) and k = −0.81 (for N = 92),
which bifurcate supercritically, and k = 1.55 (for N = 98)
which bifurcates subcritically showing clear hysteresis. Solid
and dashed lines are the positive and negative square root
branches of the calculated response in (8), the latter clearly
unstable. Open circles are numerical values obtained by in-
tegration of the equations of motion (1) for each N , with
∆ = 0.5, ωp = 0.767445, ǫγ = 0.01, and η = 0.1. Dots show
the subcritically-bifurcating single-mode solution of LC [18].

In Fig. (1) we plot |bk|2 as a function of the reduced
driving amplitude g for three different wave number shifts
k. The solid (dashed) lines are the stable (unstable) so-
lutions of Eq. (8). The circles were obtained by numeri-
cal integration of the equations of motion (1). For each
driving amplitude, the Fourier components of the steady
state solution were computed to verify that only single
modes are found, suggesting that in this regime of pa-
rameters only these states are stable. By changing the
number of oscillators N we could control the wave num-
ber shift k for a fixed value of ωp. In experiment it might
be easier to control k, for a fixed value of ωp, by changing
the dc component of the potential difference between the
beams, thus changing the dispersion relation and with it
the value of qp.

Lifshitz and Cross [18, Eq. (33)] obtained the ex-
act form of single mode solutions by substituting un =
Am sin(qmn)eiωpt + c.c directly into the equations of
motion (1). In the limit of driving amplitudes just
above threshold and η ≪ 1 their solution corresponds
to Eq. (8), as shown by the dots in Fig. (1). In order to
compare the two solutions one should note that in both
cases the system oscillates in one of its normal modes
qm with the driving frequency ωp. Here we use k to de-
note the difference between qp and the wavenumber of
the oscillating pattern, whereas Lifshitz and Cross use
a frequency detuning ωp − ωm to denote the difference
between the normal frequency and the actual frequency
of the oscillations. The frequency detuning ωp − ωm is

proportional to vgkǫ
√

δ, implying that for an infinitly



4

−8 −6 −4 −2 0 2 4 6 8
0

10

20

30

40

50

60

k

g −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

k

g

FIG. 2: (Color online) Stability boundaries of the single-
mode solution of Eq. (6) in the g vs. k plane. Dashed line:
neutral stability boundary. Dotted line: stability boundary
of the single-mode solution (7) for a continuous spectrum.
Solid line: stability boundary of the single-mode solution for
N = 92 and the parameters of Fig. 1. For k > 1 the bi-
furcation from zero displacement becomes subcritical and the
lower stability boundary is the locus of saddle-node bifurca-
tions (green line). Vertical and horizontal arrows mark the
secondary instability transitions shown in Fig. 3.

extended system the standing waves will always bifur-
cate supercritically with a wave number qp if the driving
amplitude is increased quasistatically. It is the discrete-
ness of the normal modes which provides the detuning
essential for a subcritical bifurcation if only quasistatic
changes are performed.

We study secondary instabilities of the single mode so-
lutions by performing linear stability analysis of (7). The
negative square root branch in (8) is confirmed to be al-
ways unstable. The stability of the positive square root
branch is bounded by the dotted curve in Fig. 2 describ-
ing the stability balloon of the single mode state. Out-
side the stability balloon the standing wave undergoes
an Eckhaus instability with wave numbers k ± Q, which
occurs first at Q → 0. When taking into consideration
the discreteness of the system, where only wave numbers
with Q ≥ ∆QN = Sξπ/ǫ

√
δ(N +1) can be taken into ac-

count, the stability balloon is extended to the solid curve
in the Figure, for N = 92. A transition from one single-
mode state to a new single-mode state with a wave num-
ber shift of n∆QN , for some integer n, occurs once the
driving amplitude is increased and has crossed the upper
bound of the stability balloon. Since the upper bound
monotonically increases with k, the new wave number
will always be larger. A sequence of three transitions,
obtained numerically, is shown in Fig. 3, superimposed
with our theoretical predictions. The sequence of transi-
tions is also sketched for comparison within the stability
balloon in Fig. 2. This type of analysis yields predictions
for hysteretic transitions on slow sweeps, with results for
when the transition occurs and for the new state that de-
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FIG. 3: (Color online) A sequence of secondary instabilities
following the initial onset of single-mode oscillations in an
array of 92 beams, with the parameters of Fig. 1, plotted as a
function of the reduced driving amplitude g. Solid (dashed)
lines are stable (unstable) solutions defined by (8), for k =
−0.88, k′ = 2.81, and k′′ = 6.51, corresponding to the first
wave number k to emerge and two shifts to k +∆QN and k +
2∆QN respectively. Numerical integration of the equations
of motion (1) for an upward sweep of g (blue ×’s), followed
by a downward sweep (red ◦’s) exhibits clear hysteresis and
confirms the theoretical predictions for the stability of single-
mode oscillations as illustrated in Fig. 2.

velops, which for larger g must be selected out of a band
of possible stable states.

We have focused here on single-mode solutions of
our newly-derived amplitude equation (6) and their sec-
ondary instabilities, both of which have been numerically
verified and should be experimentally tested on arrays of
MEMS or NEMS resonators. In the near future we in-
tend to study the prediction of the amplitude equations
for faster ramps of the driving amplitude, including the
possibility of wavenumber jumps larger than ∆QN and
multi-mode solutions arising from the nonlinear satura-
tion of complex patterns growing from random initial dis-
placements. In addition, we will investigate the behavior
on slow and fast frequency sweeps.
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